

Standard Multi-hole Probes

- Additive manufacturing allows almost any geometry
- Titanium, Inconel, stainless steel, plastics and more

Adjustable reference surfaces, connections and software

Multi-hole Probe	
Geometry	Straight, L-shaped,
-	Cobra, Drilled elbow
Number of holes	3, 5, 7 plus static ring
Max. length	Up to 280 mm (one part)
mux. rengen	(>280 mm for multipart
	designs)
Min. tip diameter	1 mm (Standard 3 mm)
-	
Tip geometry	Conical, spherical or
	custom
Material	Stainless steel, Titanium,
	Inconel, plastic
Fastening	Square, hexagonal, one-
	sided flattened cylinder or custom
Connections	Standard 1 mm pressure
	tubes
Reference	Reference surface
	normal to Z axis
Temperature range	950°C
Angular range	±60°(3-hole and 5-hole),
	±70° (7-hole)
Angular accuracy	< ±1°
Velocity range	3 m/s to > Mach 1.4
Velocity accuracy	< ±1 m/s
Optional	-Frequency calibration dependent on geometry
	-Temperature
	measurements
	(Thermocouple)
	· · · · · · · · · · · · · · · · · · ·

The multi-hole probes from Vectoflow range from 3-hole over 5-hole up to 7-hole probes for larger flow angles up to $\pm 70^{\circ}$. They are used in a large variety of applications like motor sports, turbomachinery and drones.

Like all probes from Vectoflow, they are made by additive manufacturing, giving a high geometrical flexibility and a very high robustness at the same time. The probes are generally built out of one piece, with no internal tubings or weldings, avoiding any internal leakage and assuring a long lifetime.

The Vectoflow concept offers a high level of customization, which is why there are no real standard geometries. The probes are adapted to every specific use case.

Measurement error

The measurement error of a multi-hole probe depends on the pressure scanner used for the calibration and data acquisition.

We recommend the use of a scanner whose pressure range just covers the expected dynamic pressure, and whose accuracy is 0.1 % full scale or better.

The lower the velocity, the higher becomes the impact of the pressure measurement error onto the determination of the flow velocity, as shown in figure 1 (for a scanner accuracy of \pm 0.05 % FS).

Generally, an error of 1 m/s or 1% of the measured velocity —whichever is higher— is expected at higher speeds. For lower speeds, the error depends on the pressure scanner and increases the lower the speed.

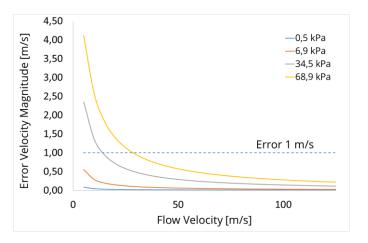


Figure 1: Dependence of velocity measurement error on pressure scanner range (0.05% FS accuracy)

Calibration process

The calibration process is always necessary for each manufactured multi-hole probe. Vectoflow has its own calibration wind tunnel, delivering flow speeds from 1 m/s up to Mach 1.4. Vectoflow has a very rigid quality assurance, which ultimately leads to the highest possible measurement accuracy of the flow probes.

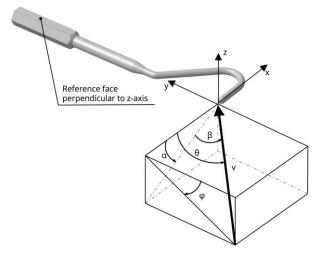


Figure 2: Flow angle definitions

During the calibration process, the probe is exposed to a steady flow with known conditions,

while pitch and yaw angles change through thousands of positions. The definition of the flow angles is shown in figure 2.

The following table shows the main characteristics of the Vectoflow calibration wind tunnel:

Calibration wind tunnel	
Angular range	±165° (yaw axis), 180° (roll axis)
Max. Power	90 kW
Velocity range	From 1 m/s to Mach 1.4
Control parameters	Mach number, velocity (m/s)
Long-term velocity stability	±0.25 % (at M 0.1)

Table 1: Calibration wind tunnel characteristics

System solutions

Vectoflow provides not only flow probes, but complete measurement systems.

These solutions include:

- Probe
- Tubing connections
- Pressure scanner
- Software

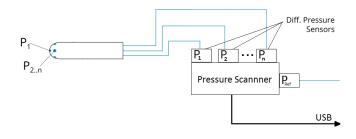


Figure 3: Multi-hole probe pressure tube connection

There is a variety of pressure scanners available, which integrate perfectly into the VectoAcquire Pro Software.

Contact

Vectoflow GmbH, Germany

T: +49 89 124149570

M: <u>info@vectoflow.de</u>

w: <u>www.vectoflow.de</u>